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4. Rationale:  
The incidence of Alzheimer’s disease and related dementias (ADRD) rises exponentially with 

age.  The search for the causes of ADRDs have relatively recently started to give more attention 
to the age-related changes that appear to be permissive of AD’s emergence.   In previous work, 
Dr. Casanova used machine learning to analyze structural MRIs obtained in ARIC to derive an 

Alzheimer’s disease pattern similarity (AD-PS) score[1, 2].  The algorithm behind the scores 
captures spatial patterns of gray matter brain tissue discriminative of cognitively normal 
individuals from dementia patients. The scores have been shown to be associated with 
cognitive status, changes in cognitive function, incident cognitive impairment[3], trajectories of 

global cognitive function[4] and particulate matter air pollution[5, 6].  More recently, using data 
from the ARIC cohort, we have shown the scores to be more predictive of incident cognitive 
impairment than a volumetric composite of regions susceptible to AD available in the ARIC 

study[7].   Since the AD-PS is not directly assessing specific brain features (e.g. hippocampal, 
etc.) but rather global and data-driven, we hypothesize it may also be a measure of brain aging 
able to identify brains that are relatively “old” compared to others of a similar chronological 

age. 
 
To explore the potential of the AD-PS as a measure of brain aging, we propose related analyses 

to evaluate thescores both cross-sectionally and longitudinally.   We will  relate AD-PS scores to 
total mortality in the ARIC cohort to determine its relationship with age-adjusted total 
mortality.  We will also examine mortality omitting deaths from causes related to CNS 

pathology (e.g. stroke, Alzheimer’s disease).  We also plan to associate the AD-PS score with 
other ARIC measures of biological aging including those derived from proteomic (somologic) 
data, and a deficit accumulation index.  We will examine whether the AD-PS score is associated 
with a proteomic profile consistent with advanced age.  We also hypothesize that the AD-PS will 

be associated with more frailty and a higher health deficit burden adjusting for age.  We 
hypothesize that higher values of the AD-PS would be associated with worse performance on 
these measures even in participants without a history of neurologic diseases affecting the 

central nervous system. 
 
Previously several groups have investigated the potential of sMRI based biomarkers to predict 

mortality. Kuller et al. reported white matter grade and ventricular volume to be predictors of 
death[8]. Henneman et al. used MRI scans from 1138 patients to generate visual rating scales 
for medial temporal lobe atrophy, global cortical atrophy, and white matter hyperintensities 

(WMH). Number of microbleeds and presence of infarcts were recorded. They found these 
biomarkers to be predictors of mortality being microbleeds the ones with the strongest 
associations[9]. More recently a meta-analysis based on 94 studies (N between 14000-16000) 
found white matter hyperintensities burden, brain infarcts (BI) and microbleeds (MB) to be 

associated with death[10]. Artificial intelligence methods has been used to estimate brain age 
which have been shown to predict mortality[11]. We have developed the AD-PS score using 
machine learning methods[1, 12]. However, none of these approaches has been examined in 

light of overall organismal aging.   
 



There is a strong interest in the development of techniques to characterize biologic age as a 
better indication of age-related risk compared to chronologic age.  A variety of approaches have 

been used to identify age-related proteins both in the circulation and in tissues [13, 14].  The 
studies using the somologic platform have identified over 250 proteins either positively or 
negatively associated with chronologic age [15-18].  Studies have begun to relate levels of these 

proteins to various disease outcomes[19, 20].  Machine learning and Artificial intelligence 
techniques are beginning to be used to produce estimators of chronological age based on 
proteomic data[21, 22].  
 

It is clear that people develop diseases and pathologic conditions at different rates with age.  
This is consistent with the idea that people age at different rates.  Rockwood and Mitnitsky 
operationalized this idea through a frailty or deficit accumulation index.  The index reflects the 

proportion of health and functional deficits a person might have from a list of potential deficits.   
The deficit index rises exponentially with age, and strongly predicts poor outcomes in persons 
after age-adjustment[23, 24].   
 

 
5. Main Hypothesis/Study Questions: 

 
Our main study question is to evaluate the potential of the AD-PS score as a brain-focused 
measure of aging. We propose to relate AD-PS scores to total mortality, and to ARIC measures 

related to biological age, including a panel of proteins derived from proteomic SOMAscan data 
and the deficit accumulation index.  
 

Our main hypotheses are: 
 
Hypothesis 1: The AD-PS scores are associated with chronological age. 
 

Hypothesis 1a: Using high-dimensional machine learning methods and the full proteomic 
panel we will be able to infer an accurate estimator of chronological age (proteomic clock). 
 

Hypothesis 2: The AD-PS scores are associated with measures of biological age. 
  
Hypothesis 2a:  The AD-PS scores estimated at visit 5 will be associated with proteins levels 

from two different panels at visit 5. (Cross-sectional). The first panel will be composed of 32 
proteins reported in the literature to be consistently associated with age and which are 
included in the somologic panels[14]. The second panel will be derived using the top 10 

proteins as ranked by a high-dimensional machine learning regression model. 
 
Hypothesis 2b: The AD-PS scores estimated at visit 5 will be associated with the deficit 
accumulation index based on data collected at visit 5 (Cross-sectional). 

 
Hypothesis 2c: The difference between estimated and chronological age will be strongly 
associated to the AD-PS scores.  



 
 

Hypothesis 3: The AD-PS scores estimated at visit 5 will be predictive of total mortality and 
from causes that are unrelated to neurologic degeneration (i.e., excluding stroke, Parkinson’s, 
ALS, ADRD, etc.). (Longitudinal) 

 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, and 

any anticipated methodologic limitations or challenges if present). 
 
Design: Cross-sectional and longitudinal study design with follow-up through visit 7.  

 
Outcome sets: 
 

Visits 5-7 
Mortality 
Cognitive status 

 
Datasets: 
 

Visits 5: 
 
AD-PS scores 
 

Proteomic data 
 
The deficit accumulation score will include 40 health/function items assessed at V5 and which 

have been included in other published frailty indices including ones used in the SPRINT, Look 
AHEAD, and the Canadian Longitudinal Study on Aging.  Elements include measures of overall 
health, physical, cognitive and emotional function, diagnosed diseases, clinical laboratories, 

physiologic, and prevalent diseases.   
 
Demographics 

 
 
Analyses: 
 

The AD-PS scores were previously estimated for 1857 individuals at visit 5. 
 
Hypothesis 1: The AD-PS scores are associated with chronological age. 

 We will perform analyses to evaluate correlations between age and the AD-PS scores. 
 
Hypothesis 1a: Derivation of proteomic clock. 



 
The precision of estimation of chronological age using high-dimensional machine learning and 

therefore the feasibility of a proteomic biological clock will be evaluated. We will use Random 
Forests, elastic net and neural networks including the full proteomic panel to estimate 
chronological age at visit 5. We are going to include proteins with less than 5% missing data. 

The dataset with proteomic data available (N ~ 6000) will be divided in training and testing.  The 
testing dataset will include participants with the AD-PS scores computed at visit 5 (N = 1857). 
The rest will compose the training dataset. Estimation performance of the regression models in 
the testing dataset will be evaluated using correlations between chronological and estimated 

age, mean squared error and mean absolute deviation. 
 
 

Hypothesis 2a: The AD-PS scores will be associated with proteins associated with biological 
aging.  
 

Approach 1: For the protein panel referenced above we are going to divide the participants in 
quartiles according to their AD-PS scores values. Then for each protein we are going to fit 
logistic regression models using the lowest and upper quartiles groups of participants.  

Relationships will be adjusted for age, sex, and race.  Also Random Forests classification 
models[25] including the 32 proteins will be fitted to investigate multivariate prediction of the 
AD-PS scores. 

 
Approach 2:To generate the second panel a we will fit high-dimensional regression models 
using Random Forests[25] and elastic net (or lasso) regularization[26] to predict chronological 
age using as predictors the full proteomic somologic panel collected at visit 5. In each case we 

will build ranks of predictors using variables importance measures available in RF or the 
absolute value of the coefficients in the case of the regularization based classifiers. We will 
select the 10 proteins that are common in the top of the ranks produced by the both methods. 

Once the panel is available, similar association analyses using logistic regression and RF as 
described above will be performed. 
 

Hypothesis 2b: The AD-PS scores will be associated with the default accumulation index.  
Linear regression analyses will be performed to evaluate associations adjusting for age, sex and 
race 

 
Hypothesis 2c: The difference between chronological (CA) and estimated age (EA) will be 
strongly correlated with the AD-PS scores. 
We will perform analyses to evaluate correlations between (CA-EA) and the AD-PS scores. 

 
Hypothesis 3: The AD-PS scores estimated at visit 5 will be predictive of total mortality 
 

Analyses will evaluate association of the AD-PS scores with total mortality after visit 5. 
Participants will be divided in tertiles according to their AD-PS scores values. Cox regression will 
be used in these analyses adjusted by age, education, sex, race, smoking and hypertension.      



 
Sensitivity and complementary analyses will look omit persons with prevalent neurologic 

disease at baseline, and causes of death unrelated CNS pathologies.  
 

Limitations/Challenges 
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